Byzantine Fault Tolerance

The Swiss Army Knife to hacks and crashes?

LGFG

Christian Spann Ulm University

"

We are increasingly dependent on services provided by computer systems

"

and our vulnerability to computer failures is growing as a result. *Miguel Castro*

Request / Reply

Failure

The Network is unreliable!

Conclusion

- 2 f + 1 Replicas
- Can cope with max f benign failures
- Inconsistent states possible
- But can be fixed

Paxos Algorithm by L. Lamport

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable"

Paxos visualised

Sometimes something is wrong

Mas

5

The Byzantine Generals Problem

We only trust the Mailsystem

© Photo by Dani Sardà i Lizaran on Flickr

The Byzantine Generals Problem

Can only be solved with a majority of 2/3 of correct nodes!

Why?

1 2 3 4

Replicated service with read/write operations on a variable

1 2 3 4

1 2 3 4

PBFT by Castro und Liskov

- Leader Backup algorithm
- Mutual Authentication
- 3 phase commit protocol
- Leader proposes ordering of requests
- Backups validate that leader is correct

BFT visualised

More facts on PBFT

- View Change protocol for leader election
- Optimized through MACs
- Proactive recovery (PBFT)

Still we need **3** Steps!

FastBFT

Jean-Philippe Martin, Lorenzo Alvisi

FastBFT

FastBFT visualised

Conclusion

- Strict fault-tolerance
- Not scalable
- Quite a few different solutions
- Adaptation could improve performance

Thank you!